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A mathematical model, describing the dynamics of laser plasma (gas
dynamic stage) in air medium with the pressure variation in the range
of 1-100 Bar, is presented. The simulation is based on the transient
awially symmetric system of radiative gas dynamic equations. The
application on the multi-group diffusion approximation for the simula-
tion of radiation transfer is discussed. The solution of gas dynamic
equations is made by the explicit finite-difference FLIC method. For the
energy equation solving jointly with the averaged equation of radiation
diffuston, the implicit difference scheme is used. The later is realized by
the proposed nonlinear iterative procedure. The evolution of laser
plasma in the near threshold values {for plasma formation) of radiation
intensity G=5x107-5x 102 W/cm? {4 =1.06 4m) is analyzed. It is
shown that the mechanism of the plasma expansion strongly depends
on the pressure of the gaseous medium: it varies from the light
detanation regime of fast combustion at low pressures; to the slow
combustion in the form of the subsonic radiative wave at high
pressures, '€ 1994 Academic Press, Inc.

1. INTRODUCTION

At present, due Lo rising inlerest o surlace machining of
materials by means of concentrated cnergy flows (laser,
plasma, clectron beam), atlention is focused on the
physicochemical processes in the vicinity of the surface
under treatment. I energy density Nux of laser radiation
exceeds some threshold vakue (that generally depends on a

number of factors, but usually is larger than 10 W/cm?), a
laser produced plasma appears near the target’s surface.
Later on the energy absorbed by the target depends on:
{a) laser irradiation passed through the plasma cloud; (b)
radiative transler from plasma pattern. Both are unknown
and difficuit to be determined. The experimental results [ 1]
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and the theoretical investigations [2, 3] have shown that in
laser action on a highly reflecting metal surfaces, the energy
transfer to the target can be increased {or, generally,
optimized ), if laser plasma is built up over the surface. From
the other hand, laser plasma can be used to create surface
layers of ceramics such as nitrides and carbides. That is why
the simulation of laser plasma dynamics is important for
optimization of laser processing parameters.

The dynamics of the plasma formed over the target sur-
face depends on the wavelength, intensity, duration, spatial,
and temporal energy distribution of the taser pulse, as well
as on a number ol gas medium parameters, the most
important of the latter are the gas type and the pressure.
The laser plasma propagation in gas medium can be
of two qgualitatively different types: fast [4] and stow [5]
combustion. '

Referring to the fast combustion regime are the
mechanisms of light detonation [4, 6], supersonic radiation
waves [7], breakdown waves [87, as well as their various
combinations. The fast combustion regimes are charac-
terized by high temperatures (about 10eV), high pressure
diffcrences (hundreds and thousands bar) and supersonic
velocities of plasma patlerns propagation. As a rule the
shock-type gis tonization caused by gas-dynamic compres-
sion forces plays a signilicant role in these regimes. If this is
the case, the region of the shock wave strongly absorbs laser
radiation.

In slow combustion regimes the main mechanisms are
heat conductivity [5] and subsonic heating by radiation
(8, 9], which are characterized by slow subsonic expansion
of the heated gas. The plasma patterns propagate at nearly
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constant pressure close to the pressure of undisturbed gas.
The mathematical description of the slow combustion
regimes is more simple as compared, for instance, to the
light detonation regime of fast combustion, because the
mathematical model should only consider the processes of
heat and radiation transfer.

If the solid target is located in the focal plane, the situa-
tion becomes considerably more sophisticated due to the
rise of the number of new physical processes. The kinetics of
the phase transformations inside the target material, the
interaction of the evaporation products with the ambient
gas atmosphere and the conditions of the laser-induced
breakdown formation should be taken into account. As a
consequence the plasma behavior in the gas media becomes
more complicated, because several mechanisms can, at
once, play a significant role in the ionization process. From
technological applications point of view, the regime of slow
combustion is of the greatest interest. However, experiments
show that it is difficult to realize this regime in the presence
of the target, due to the substantial influence of gas-dynamic
effects.

The present paper is concerned with the evolution of the
gas-dynamic stage of the laser plasma development, in
particular with the transitional regimes in gas media at
variable pressures (1-100 bar), under pulsed laser action
with near-threshold intensities G = 10"-10* W/em? {at the
wavelength 4 =1.06 um).

The above mentioned aim is realized through the
development of the proposed algorithm for numerical
simulations of radiative gas-dynamics phenomena.

2. THE MATHEMATICAL MODEL AND
THE PRINCIPAL ASSUMPTIONS

When the self-radiation of laser plasma is taken into
account, the corresponding mathematical models become
rather complicated. In general, the radiation emitted from
plasma: {a) contains information about its state; (b) can
influence the energy balance in the system; (¢) can break the
thermal equilibrium. The description of the radiation pro-
cesses depends on the emission—-absorption mechanisms, as
well as on the medium parameters: the characteristic system
size L and free-path length /, of a photon with energy Av
{which is determined by the density of particles p and their
temperature T'). The main mechanisms of radiation are
known to be the following: discrete emission-absorption in
atoms and ions, radiative electron recombination and
photoionization, bremsstrahlung (braking radiation), and
photon absorption by an e¢lectron in an ion field. The
radiation processes can be described in the simplest way
in two limiting cases, when the optical thickness of plasma
is either small (/,% L) or large ({, < L).

The optically thin plasma is characterized by a low
density of electrons {n,~ 10" cm ™3} and relatively large
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geometrical dimensions. When the dimension L is not too
large (L < 1 m), all kinds of radiation easily leave plasma, If
it is the case, the reliable description can be obtained on the
basis of the coronary model approximation [107. It is
assumed that the probability of the collision transitions
between levels is small as compared to the spontancous
transitions, and each act of collision excitation of either
atom or ion is balanced out by the corresponding act of
radiation decay. The radiation spectrum of such a plasma
consists of a set of narrow lines on a background of the
continuous spectrum.

The optically thick plasma (/, < L) is characterized by
Saha-Boltzman charge composition. The corresponding
spectrum of equilibrium black body radiation contains no
lines, as broadening is too large and the lines merge with the
continuous spectrum. The radiative losses in this case result
only on the plasma energy balance. The mathematical
description of the plasma in such a state can be performed,
for example, in the framework of the so-called, radiative
heat transfer model [11].

If both collision and radiative transitions play substantial
role simultaneously, then it corresponds to an intermediate
position between these two Limiting cases, and therefore
it is the most complicated to be described. Usually the
approximation of so-called collision-radiative model is
applied to analyze the behavior of such plasmas [[2, 13].
Various non-equilibrium effects in plasma of an arbitrary
transparency can be described by means of this model.
When the dimensions of plasma pattern are not too small it
becomes necessary to account for the reabsorption of both
discrete and continuous spectra. In such a case the equa-
tions of collision-radiative model should be completed by
the equation of the radiation transfer. The approximation of
collision-radiation model is oftenly used to describe over-
heated or undercooled plasma of relatively high density
n,>10"%ocm 7 [14].

Generally the laser plasma that is formed in a flux of
evaporated matter or in an ambient gas atmosphere can
have quite different optical thickness, due to sharp varia-
tions of the density p and temperature 7" with time and
space caused by considerable gas-dynamic processes. When
the dimensions of plasma pattern are large enough, the
reabsorption of both discrete spectrum and continuous
spectrum becomes significant. The further point of com-
plications is the fact that the laser radiation is absorbed by
the electron component with the temperature 7, which
turns out to be higher than the temperature of atoms and
ions 7. In general the relaxation process due to elastic
electron-atom and electron-ion collisions can be rather
prolonged, so the plasma cloud side facing the incident
radiation is in thermal non-equifibrium state. The descrip-
tion of the radiation and of the evolution of plasma pattern,
as well as the subsequent problem solution, appears to be
the most complicated in this case, because the medium
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macro parameters (gas-dynantic and temperature fields) are
related to the micro processes in a sophisticated way. From
the mathematical point of view it means that the processes
of gas-dynamics should be analyzed simultaneously with
the processes of the kinetics of radiation-collision transi-
tions and radiative transfer.

Thus the evolution of the laser plasma represents an
extremely sophisticated phenomenon, and to investigate it
efficiently by means of numerical simulations one should
make reasonable assumptions and simplifications for the
definition of the problem. The main of them are the
following:

1. Forrelatively large dimensions /, < L and high plasma
density the conditions of local thermodynamic equilibrium
should be respected at least close to the surface, the
dominating process being the reabsorption of the con-
tinuous spectrum.

2. Taking into account the radiation transfer in the
prodlems of gas-dynamics makes the algorithm of the
solution much more complicated. The difficulties are
associated with the equation of radiative transfer, which is
primarily multi-dimensional:
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where ¢ denotes the light velocity, £, is the spectral intensity
of the radiation,
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is the spectral intensity of equilibrium radiation, £ is
Planck’s constant, & is Boltzmann's constant, r is the radius-
vector, £ is the vector of unit length in the direction of
photon motion, &, is the absorption coefficient for a photon
with frequency v, T and p are the temperature and density
of the matter, and 7 is time.

The difficuities arising in the numerical solution of the
radiative gas-dynamics problems is a stimulation to use
various approximations. In particular, assuming that the
field of the laser plasma radiation has low anisotropy, one
can utilize the model of diffusion approximation for the
description of the radiation transfer (isotropic distribution
of radiation) [11],
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where U, is the spectral density of the radiation,
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is the spectral density of equilibrium radiation, W is the
vector of the radiation energy flux.

The index v will be raised up in further notation, after the
appearance of spatial (r, z) and grid (i, n) indexes.

The equations of the diffusion model are of smaller
dimensionality than the initial transfer cquation, as it does
not depend on the angular coordinates 2.

3. Taking into account that characteristic time of
the medium parameters variation is larger than the time
of the radiation pass through the region under study, the
radiation transfer can be described as a quasi-stationary
phenomenon.

4. In addiation, the density of energy and the radiation
pressure are small in comparison with the density of energy
and the pressure of the medium. Moreover, in the tem-
perature and plasma density ranges under study, radiation
scattering is considered to be insignificant.

C onsider a two-dimensional transient problem of the
laser radiation interaction with the air plasma. The incident
laser flux with the wavelength A = 1.06 um is assumed to be
symmetric with respect to z-axis {which is directed along
the beam propagation), the intensity being distributed
according to a Gaussian law G = G, - exp( —r*/R?), where R
is-the radius of the focal spot. The peculiarities of the inter-
action, as well as the laser plasma behavior in a dense air
atmosphere with the pressure varying over a wide range, are
studied from the moment when a thin (z,=10-50 gm)
absorbing plasma layer is formed close to the target.

The mathematical {ormulation of the problem is as
follows. Accounting for the approximations made, the
interaction of the laser radiation with the gas medium
is described by the system of equations for radiative gas
dynamics (RGD) which are symmetric with respect to
z-axis [ 15, 16]:

dp 10
bl T — = 4
6{+rﬁr(pu)+6 (pr)=0 (4)
dpu 1@ . @ . _dptw)
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The notations involved: r = time; r, z = spatial coordinates;
index v refers to spectral wvalues, , v=components of
the velocity vector, € =internal energy, p= pressure, =
artificial viscosity, G = laser radiation intensity.

The boundary and initial conditions for the equations
{4)}-(10} have the form

t=0, T=T,, 0 (rxz)<(Rxzy)
T=T,, (Rxzgysi{rxz)<(L,xL,) (11)
P=P,, 0<(rxz)<(L,xL.)

>0, r=0, v=0, W,=0
z=0, u=0, cU=oT"
r=L,, p=p,, W.=-clU2 (12)
z=L., p=po. W.=—cUp,

G = Goexp(—(r/R)?).

3. THE SOLUTION ALGORITHM

When developing the solution algorithm we used to a
large extent the approach presented in [16, 17] for the
problems of the dynamics of emitting gas. The overall com-
putation scheme to solve the system of RGD equations at
each time step =+ can be presented as a combination of
several stages.

in the first stage the equations of multi-group diffusion
are averaged on a difference level with respect to photon
energies, based on the gas-dynamic values and the
temperature as obtained from the previous /= layer.
Averaging is produced by means of the solution of N,
elliptic-type equations. For the reduction of the computa-
tion time, the coefficients of the thus-obtained averaged
equation were considered “frozen” during J time step.
Therefore the averaging procedure was executed once in
every J time steps rather than in every step.

In the second stage the diffusion equation and the
equation for energy transfer are solved together. In the
third stage the gas-dynamics equations are solved.

Let us consider each of these stages in detail:

1. As compared to the equations of gas-dynamics
(4)-(6), the equations of radiation diffusion (8), (%} contain
one variable more, namely v, this extra variable causes a lot
of complications in solving the task as a whole. To over-
come this difficulty we use the multi-group approximation
[9, 157]. According to it, the whole spectrum is split into a
finite number N, of frequency ranges (groups). For the
frequencies belonging to the same group v, <v<v,_,
the absorption coefficient « (7, p, v} is assumed to be
independent on frequency:

kAT p )=k (T,p) k=12 N,

and its magnitude is determined by means of the frequency
averaging procedure, using Planck approximation:
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In this case the radiation transfer is determined by
the system of equations for the multi-group diffusion
approximation,
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which can be easily reduced to equations of elliptic type,
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the considered elliptic equations can be written in the form

1
—div (5 i) grad U, + ok, U, =4k, a(T, hv,, hv, . ) - T,

K

(15)
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where
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To determine the &(x) lunction, the integral expression
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was approximated by the relations [167]

1,3799x3(1/3 — x/8 + x*/62,4),
1,3799[6,4939 — e —*(x* + 3x7 + 6x + 7,28),

{ x<2
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The solution of the system of elliptic equations (15) is a
time-consuming computational procedure, so il is quite a
natural wish to reduce the body of computations that are
required to solve the multi-group equations; moreover, only
the overall flux W=} | W, and the overall density of
energy U=3* | U, are required to be known in the initial
problem. For the continuous spectrum the method of frozen
coefficients is an efficient way of averaging [ 18].

Consider finite-difference approximation of Eg. (15) on
the five-point stencil,
BLUL,  (+ KLU —ChUY

in n = i—Ln in in

+Z5 Uk, FE=0,

in

+EfnUI|(+ in
(16)

where the coefficients B | KX | Z% are defined as usual, ie,

m? i

Bi'(n = 2C{3(Z"+] _Zn)[xﬁ:n(zn—l - Zn)
+ Ki.nfl(zni Zn;l)]}ils
Kﬁm :4ri/{[3xﬁ,("141 —r)+ Kf, 1‘,,(";'_ roo)1rie )

—(ris +rdh i, n is the cell number.

To solve Eqs. (16) the non-linear iteration method [19]
was applied; it was used for a nine-point finite-difference
stencil [177]. The essence of the method as applied to the
five-point scheme can be presented concerning a singie
group, say, k=1. 1t is assumed that the solution of the
system (16) satisfies simultaneously the conditions

Uf,rr =ai+ l.n UH— 1.n +}Bi+ 1.n>
Ui,n =V¥i—1,n U, Int d;_ Ln

" *
Uin=0F Ui + B85 1

Ui.n = ?fnk 1 Ui,n—l + di?nyl'

(17)

(18)

Substituting the relations (17), (18) in Eq. (16) one obtains
the system of three-point equations. To solve it the short
Gaussitan method for three-diagonal matrixes can be
applied:
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a,*l(ul): 1,

where 5 is the iteration number, s+ 3 is the number of
intermediate iterations.

Aflter the a-process is accomplished, the Heration process
is developed to obtain §, d, §*, d*, based on already known
values of a, 7, a*, ¥,
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The function f;, is introduced to improve the convergence.
It is recalculated for the next iteration of the f-process:

{y+1) __ . % ly+1)
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Using the above formulas, averaging of the multi-group
system {16) with respect to k is performed:
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The coeflicients of this equation are defined as
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The averaging of the multi-group equations is not per-
formed in each time step. In order to reduce the velume

of computation the averaged coefficients B, .., Z,, are
assumed to be unchanged during J time steps. In J steps the
systemn of multi-group equations is again solved numerically
and new averaged coefficients are determined.

i

2. When solving RGD problems, the temperature is
determined by means of joint solution of the equations for
energy transfer and radiation diffusion. The gas-dynamic
properties, namely the densily p, velocity v, and the work
of compression forces are assumed to be known. The
simultaneous solution of these equations is required because
the radiation energy flux W depends on temperature and
pressure in each point of the region under study, so W
cannot be presented by simple relations. Therefore the most
straightforward way to solve the equation for energy is an
explicit scheme, where the flux W is determined from the
data of the preceding time step. However, as shown by
numerous calculations, in this case the stability conditions
require rigid limitations on the step of integration over 1.

Tt is well known that an implicit method is more efficient
to solve the problem when the equations for both energy
and radiation diffusion are solved simultaneously. The
equation for energy and the averaged equation for radiation
diffusion are

de 1.
T (div W+ Q),
—div 3% grad U + exll =4xa T,

where (2 is the contribution of all the sources but radiation
to the equation for energy, U is the radiation density. In the
finite-differenice form the system of equations to determine
the radiation flux and the internal energy is written as

el
T
=L [B U(S+ll’+K~ U(As-!—lllgc‘ U(.v+1]
Pjn iLwn— in i—Ll.n in in
+EL UL+ Z, U+ Q4] (21)

3 s+ 1 L v+ 1
B, U+ K, UK —C, U+ E, UK

n—1 i—1,n i+ Ln

4 Z UCT ) e, Uy g FEt =g,

in+ 1 |3

It is necessary to remind that B, .., Z,, are calculated
only once every J steps according to formulas {20), The
function F, is caiculated for every time step,

N

Fin = Z Kk(Tipw pin] Gk(Tins hvk’ hvk+ 1) T?n

k=1
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In Eq. (22) the value of F,, is unknown. By linearization F,,
and e, with respect to 7, one obtains

ryro=rp+ () (v} e

de\
(s+1) _ .(5) {s+ L} (¥)
e, =g+l —= T, T
l (aT)r'n( " m)

Based on expressions (21), (24) and (22), (23), the implicit
scheme of the solution of equations for energy and diffusion
of radiation is written as

OF\Y .
rin =1 o (F)] o -a
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(24)
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gt el
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where

gl = IR\ -y fip "
“ or/,, or’ /,

The density of the radiation energy U and the temperature
are determined from the joint ‘solution of the system
(25), {26).

3. In the RGD problems the radiation field is closely
connected 1o the gas-dynamic properties of the medium.
For finite-difference approximation of the gas-dynamic
equations (written in Euler variables) four-apgular
orthogonal grids are often used. Thus-obtained finite-
difference schemes have the simplest {orm. In the present
paper the FLIC method [ 20, 21] was used for the solution
of equations for gas-dynamics. The characteristic feature of
this method is the Euler-Lagrange approach.

In the first Lagrange stage the convective flows of mass,
momentum, and energy are not taken into account and the
system

op

=Y

u_ AP+w) o _ dPtw)
Pa= a - PaT z
o 1a(ru) v\ 0G
pa"””‘”@ ar *&)_&’

is considered which is approximated by the expressions
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Here «/ =2, p/=V2 /=12 are the intermediate values

of velocities and energy: r.,,,=05(r,4+r. ), u,=
i1 =172 j—1 P— 172

05" +u)m'7), 0, =05(] " + 0,7 17),

The artificial viscosity w is defined as
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if the following inequalitics hold simultaneously:
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c,in

TH
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Otherwise w/, ' =0.

Here u, is the sound velocity; &, k are constants. The
coefficient ¢ characterizes the scale of smoothing of the
shock wave front, O0<k <2a; o} "' is calculated in an
analogous way.

In the second Euler stage, the flows of matter, momentum,
and energy drawn through the cell walls are taken into
account and their final magnitudes are found. Thus, these
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flows crossing the cell wall in the direction r<r<r,_,
z,€z<z,,.,areequal:

F—1/2 f— 42 J—1 J=1/2 j— 172
AM(,)_T_,_l (u."—ln +u{n ) pi—lnvui—ln +"{n >0’
in = ) pj—l u;‘—[[2+uj—lf2<0
in 3 i—1n in =M
J—1/2 j—1/2
AV(r):Tjil (u:‘—ln +u{n / )
in 2

=V -2 12 i—172
{pr’—lnuiin S W Ty Ty, >0,
-1, j—1/2 =172 i— 172
p{n u{n ! ’ u.f ; +uj ’ QO,

i—1n in

17 i—1/2
{rf _ pi—1 (ui—ln +u1‘n )
AEVI =1/ T

{p{—lE‘_i—l,fZ uj—l/2+u{"!—1/2>0’

—in=i—in > "*i—1n

S ]

—1in

where EJ7"2 =7 % + (w77 ¥ + (07 V)2,
The flows of mass and energy in the z-direction are found
analogously. After that the gas-dynamic values p, w, v, £, ¢

are recalculated:
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In the gas-dynamic stage of the solution the usual Courant
limitation is imposed on the integration step .

4. THE RESULTS AND DISCUSSION

The mathematical technique presented in previous
sections was applied to investigate the plasma behavior
in air atmosphere with a pressure variation in the range
1-100 bar,

The radiation transfer in plasma (or in partially ionized
gas) is closely connected with gas-dynamic and temperature
ficlds, because the latter governs the optical thickness of the
layer. In order to realize the multi-group approximation the
determination of the group absorptivity coefficients x,{T, p)
in a wide range of temperature and pressure is required.

However, for the low-temperature air plasma, the
description of these coefficients in terms of simple analytical

expressions is not available. The analysis of theoretical and
experimental data [22] of the air absorptivity coefficients
resulted in their tabular presentation for each group. The
tabulation of beforehand-averaged absorptivity coefficients
was performed for a given number of densities p,, | <i </,
I=8, and temperatures T,, 1 < j<J, J=10. The ranges of
considered temperature and density values were equal:
T;e[1-20] eV and p,e[107*~10'] g/cm’. In calcula-
tions of the current values of 7 and p the absorptivity coef-
ficients «} are obtained by means of two-dimensional
logarithmic interpolation. The frequency range taken into
account lies in the region hv =0-40 eV; it was divided into
six groups. The assumed value of maximum temperature
T was used to determine the upper boundary of fre-
quency range and, consequently, the number of groups, by
means of the relation v 2 2.8 T .. This relation is derived
from the maximum value of Plank’s function for spectral
equilibrium density of radiation U,.,. It was assumed,
that in the present case the plasma temperature does not
exceed 10eV.

Analogous tabular presentations are used for the
equations of state e = ¢(7,, p), P= P(T, p) [23], determined
from the quantum-mechanical statistic models [24, 257.

The computational grid with the (34 x 35) total number
of nodes is used for simulation. Along the r axis the grid
nodes distribution is uniform. Along the z axis the grid
nodes are condensed towards the target, according to the
law of geometric progression with the factor g =1.1.

The integration time-step 7, was determined automati-
cally in the course of solution with respect to the
beforehand-fixed value of accuracy and the number of
iterations.

Let us point out the following computational features of
numerical algorithm. Almost 90% of the total run time is
used for the averaging, for the solution of the muiti-group
diffusion and energy equation. The iteration process has not
a high convergence rate, but it was found to be not sensitive
to sharp variations of sought-for quantities, as, for example,
K(T, p, v).

The chosen laser action parameters are typical for pulse
laser processing of materials. The laser pulse {wavelength
A=1.06 um) has a duration of 1 us with a rectangular
time-profile and Gaussian spatial distribution G =
Gy exp(—(r/R)*) with the focal spot radius R =300 um,
The maximum intensity G, was varied in the range
107-10* W/iem?

When the ambient air pressure is P, = | bar, the initial
plasma layer has the temperature T, = 1.7 eV and thickness
zg =50 pm. At the first moments the incident laser radiation
is almost entirely absorbed in the hot region. Due to the
high density of the plasma layer, the plasma self-radiation is
in fact locked and does not leave the hot region, that causes
the sharp rise of the temperature and the pressure {up to
P.x~3kbar). The high pressure difference induce an
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intensive extension of the plasma layer in z-direction.
The plasma density and pressure decrease, while the
temperature still grows under the laser action up to the
maximum value of T, ~8.5eV. At about 7~ 10ns the
shock wave arises at the boundary of the plasma with cold
air, and at ¢~ 50 ns the spreading of the hot region in a
radial direction becomes noticeable. The plasma density
decreases simultaneously with its temperature rise. This
leads to the variation of the plasma optical properties and
the rapid increase of the self-radiation role in the energy
balance of the system,

The cold air at T~0.5eV is transparent for the visual
spectrum radiation and for the near ultraviolet, but it
strongly absorbs the radiation in the frequency range
v =10-15eV. Thus, if the temperature of the hot region is
less than 3 eV, heating of the cold layers ahead due to self-
radiation is insignificant. At the same time the magnitude of
the radiation flux, propagating towards the target are
governed to a large exient by the density of adjacent plasma
layers and depends deeply on the regime of the gas-dynamic
cxpansion.

The temperature isolines for the plasma pattern cross
section at the moment ¢ = 65 ns are presented in Fig. 1. The
region involved in the shock wave is hatched and fringed
with dotted lines. The velocity of the shock wave has already
reached the maximum value v, ~ 3 x 10° cm/s and begins
to decrease slowly. The temperature of the central region is
slowly decreasing as well. The temperature isolines exhibit
several regions, where dominant heating mechanisms vary.
The central regions labeied 1 and 2 are heated by laser
radiation, The regions 3 and 4 are heated by the compres-
sion forces’ action, by the overall self-radiation flow W, and
in part by the laser radiation. About 70% of the radiation
emitted from the central regions is absorbed by the cold gas.
The work of compression forces is not vet dominant in the
energy exchange, as is illustrated by the semisphere-shaped
tetnperature isolines. The total radiation flux towards the
target is about 10% of G,.

The geometry of the plasma pattern changes qualitatively
at 1 ~0.1 ps. The isotherms at 1=0.13 gs arc presented in
Fig. 2. At this moment the direction of the gas-dynamic
motion had been defined. The shock wave region is in close

200

-400  -200 [ 400 r,um
FI1G. 1. Spatial temperature distribution in plasma pattern (initial
pressure Py = | bar, G, = 10* W/cm?®) at time 1 = 65 ns. The temperature of

the indicated areas: 1, 6.4eV; 2, 70eV;3,27eV; 4, 09eV. 5 005V,

—800 400

—400 Q

Toum

FIG. 2. Spatial temperature distribution in plasma pattern (initial
pressure Py= 1 bar, G, =10° W/cm?) at time ¢ = 135 ns. The temperature
of the indicated areas: 1,24eV;2,3.0eV;3,15¢V;:4,04eV; 5,005V,

contact with the hot absorbing plasma layers. This forms
the tvpical light-detonation complex, which influences the
plasma pattern to obtain a cylindrical shape. Affected by
gas-dynamic expansion the hot region breaks away from the
surface and, due to the absorption of laser radiation, moves
fast towards the source. Regions 1,4, and 5 are heated
mainly by radiation; region 3 is subjected to the combined
action of compression forces, laser, and self-radiation.
Nevertheless, spatial gas-dynamic expansion becomes
dominant, which results in a substantial decrease of the
temperature and of the pressure in the central regions.
The total radiation flux W towards the target reaches 18 %
of G,.

Later on, at £>0.5 us the plasma optical thickness
decreases and the laser radiation again reaches the
boundary z =0, which is assumed to be the target surface.

It is necessary to note the high sensitivity of the
laser-plasma interaction to the laser radiation intensity.
The initially given plasma is not supplied enough by laser
radiation and the light-detonation regime is not obtained
if Gy is reduced by one-half.

The process of the laser radiation interaction with plasma
is strongly influenced by the ambient pressure of the gas
medium {in the present case, air). Let us consider the situa-
tion when this pressure is two orders of magnitude higher
{namely P, = 100 bar), the thickness of the original plasma
layer is zo = 15 pm, all other parameters being equal. In this
case at 1~ 0.1 us the shock wave entirely breaks off the hot
region; the temperature of the shock wave does not exceed
0.3eV, and the maximum velocity v, ~ 2.4 x 10° cm/s,
and it is entirely transparent to the laser radiation. The
light-detonation mechanism is not obtained and the
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z, pm

80O 400 T pm

FIG. 3. Spatial temperature distribution in plasma (initial pressure
= 100 bar, G, = 10° W/cm?) at time :=10.5 us. The temperature of the
indicated areas: 1, 1.9¢V; 2,45¢V; 3, 22eV;4,01eV; 5003 eV.

main propagation mechanism is the subsonic radiation
wave [26].

The temperature isolines in the plasma region at
t=0.5 us are presented in Fig. 3. They indicate substantial
plasma cloud expansion in the radial direction. The
dynamics of the characteristic dimensions of the plasma
cloud along the z-axis direction (Az} and in the per-
pendicular direction r {4r) is shown in Fig. 4. Figures 3
and 4 indicate that under an elevated pressure, the area and
the contact time between the target surface and the chemi-
cally active plasma substance are significantly increased.
The level of energy exchange due to the heat conduction
and the radiation (with the spectral maximum about
hv=10¢eV) is increased also. Note that the target surface is
entirely screened from the laser radiation; that, on the one
hand, prevents the former from destruction and, on the
other hand, can increase the microhardness of the surface
layers [27]. At the same time the results of the simulation
show that the conditions of heat transfer and plasma action
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400
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1 L 1 I —
0 o1 02 0.3 04 05
T, Us

FIG. 4. Time dependence of the sizes of the plasma pattern along z and
r axes (initial pressure P, = 100 bar, G, = 10* W/cm?),
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F1G. 5. Spatial distributions of; temperature T, pressure P, and
density p in plasma (initial pressure Py =100 bar, G, =5 x 107 W/cm?).

are not optimal for two reasons: The hottest plasma layers
are not in contact with the surface; the plasma cloud loses
contact with the surface relatively last,

The plasma pattern propagation can be delayed by a
simple reduction of the intensity G,. The spatial distribu-
tions of T, P, and p at two moments £ = 0.1 gsand r=0.5 us
after reducing G, by one-half (to Go=5x 10”7 W/cm?) are
presented on Fig. 5. As in the previous case the main
mechanism of the plasma propagation is the formation of
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FIG. 6. Gas-dynamic (dashed curves) and radiative {solid line curves)
components of plasma energy balance at t, = 0.1 gsand 1, = 0.53 s (initial
pressure Py =100 bar, GG, =5 x 107 W/em?).
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subsonic radiation waves. The laser radiation is entirely
absorbed by the plasma layer. The maximum temperature
of the hot region reaches the value of T'=3.6 eV, further
growth being limited by the increase of emission. This
is confirmed by comparison of the spatial distribution
of two plasma energy components, namely radiative
B=(1/r){(8/0r)(rW,)+ W, /0z and gas-dynamic A=
P((1/r)@for{ru)+ dv/éz) at two-time moments, as pre-
sented in Fig. 6. As a result of two-dimensional gas-dynamic
plasma spreading, the area of the thermal action of the
radiative {lux appears to be several times larger than the
focal spot. The maximum value of the acting flux does not
exceed 5 x 10° W/cm?, preventing the target from destruc-
tion, Nevertheless the surface does not still contact the
hottest plasma layers; thus the depree of plasma-chemical
action is reduced. From experimental observation [27-28]
decrease of the pressure in a chamber to 30-50 bar couid
result in the destruction of the target’s surface. As shown by
computations, the reason for such a phenomencn at
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FIG. 7. Time dependence of laser ((7) and radiation { W) energy fluxes
reaching the surface of the target.
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FIG. 8. Spatial distributions of: temperature 7, pressure P, and density p in plasma pattern (initial pressure P, =30 bar, G, =5 x 107 W/cm?®}.
The values of T, P, and p in the indicated areas are the following: at £, =0.1 us

1. T=166eV, P=540bar, p=4.6x10"?g/cm?

2. T=28eV, P=540bar, p=18x1073gjiem®;
3. T=023e¥, P=482bar, p=6.1x10"2g/cm";
4. T=005eV, P=6Tbar, p=38x10-2gfem?
5. T=003eV, P=30bar, p=3x10"2gicm%

att, =07 us
l. T=31eV, P=125bar, p=2x10"%g/em?;
2. T=225e&V, P=I122bar, p=19x10-*gjcm?;
3. T=0625eV, P=121bar, p=13x10"7glem?
4. FT=033eV, P=120bar, p=23x10"7g/em™;
5. T=0l16eV, P=120bar, p=23x10"%gjem?;
6. T=011¢V, P=I126bar, p=35x10"*glm?,
7. T=0075eV, P=146bar, p=6x10"2gfem’;
B. T=003eV, P=30bar, p=3x10""g/cm?
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FIG. 9. The proposed laser pulse time-profile optimum for the
maximum time of the contact between the hot plasma region and the
target’s surface.

P =30 bar could be an intensive gas-dynamic spreading of
the hot region. The initial stage of plasma development in
the vicinity of the surface differs only slightly from the
plasma behavior at P = 100 bar. The main part of the laser
radiation is absorbed in the hot region; thus a complicated
structure with different temperatures is built up.

The magnitude of the flux acting on the target lies in the
range (1-3)} x 10° W/em?; the radius of interaction reaches
the value of 600 um. However, due to the lower density of
the medium, the intensive expansion of the hot plasma
produces such a decrease of the optical thickness that the
laser radiation again reaches the surface at =05 ps. The
time dependencies of the laser flux G{t) and the total radia-
tion flux W/(1) incident on the surface are presented in Fig. 7.
They determine the surface temperature evolution. As
consequences of the non-monotonic behavior of G{(¢), the
energy flux is substantially reduced at ¢t =0.1-0.4 us due to
the low-transparent plasma cloud. However, at the end of
the pulse ( < 1 is) about 80% of the laser radiation reaches
the surface due to the variation of the plasma optical thick-
ness; that could result in target destruction. At the same
time, when the pressure is P, = 30 bar, the surface contacts
the hotest plasma regions during the entire pulse duration,
see Fig. 8. The regime of the laser action can be optimized
to eliminate the target destruction with simultaneous
prolongation of the contact between the plasma and the
target by setting the laser pulse time-profile proposed in
Fig. 9 [29].

CONCLUSION

1. The proposed mathematical model describes the
gas-dynamic stage of laser plasma evolution in air with the
pressure varying in the range of p=1-100.bar and the
energy density flux of laser radiation varied in the range
G=5x10-5x 10® W/em? (4= 1.06 um).

2. The computational method (based on finite-differen-
ces) is used for the coupled solution of the equations of gas
dynamics and radiation transfer in the multi-group diffusion
approximation. The present approach praves its efficiency
for simulation of the dynamics of radiative gas.

3. The computational experiment on laser—plasma
interaction under controlled ambient pressure is a tool to
determine different mechanisms of evolution and propaga-
tion of plasma patterns: from Light-detonation at Py =1 bar
to subsonic radiation waves at Py = 50-100 bar. The plasma
development at P,= 10-30 bar corresponds to the inter-
mediate regime.

4. The total energy flux reaching the surface of the
target (including the radiative component) is determined.
The existence of a maximum of radiative energy flux versus
the ambient gas pressure and energy density flux of laser
irradiation is shown.

5. The optimal intensity~time profile of laser pulse to
obtain: {a) the maximum radiative energy transfer into the
target; (b)the maximum time of the contact between the
hot plasma region and the target’s surface, can be proposed.
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